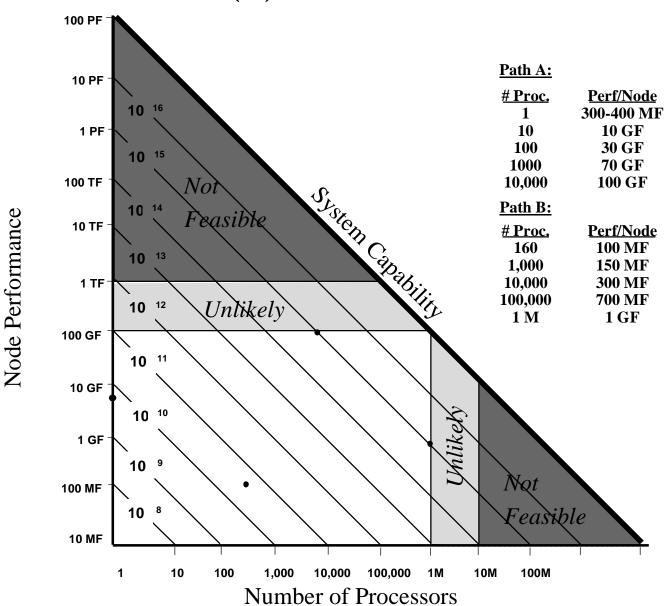
Findings and Recommendations from the Petaflops Workshop Series

Thomas Sterling

NASA Jet Propulsion Laboratory

&


California Institute of Technology

June 24, 1997

Path(s) to PetaFLOPS

Workshops on Petaflops Computing

Goal

 Determine feasibility, time frame, and means of achieving petaflops performance

Focus Issues

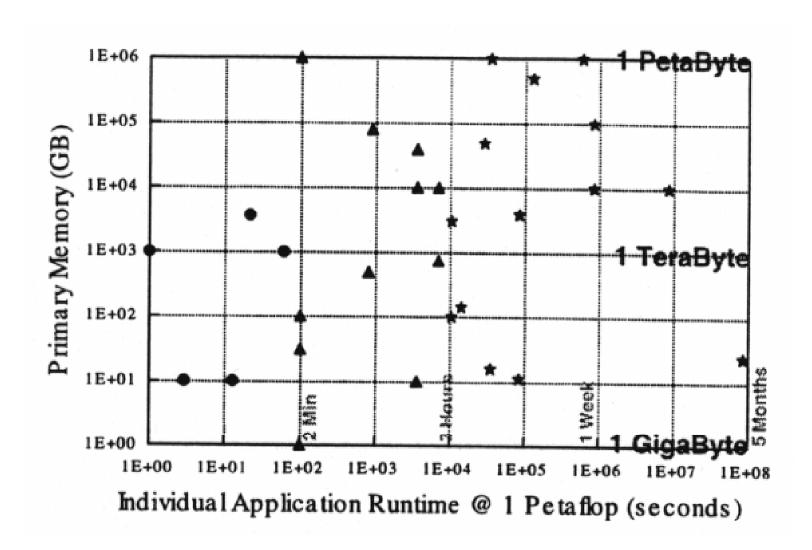
- Technology
- Architecture
- System Software
- Applications
- Algorithms

Petaflops Workshops

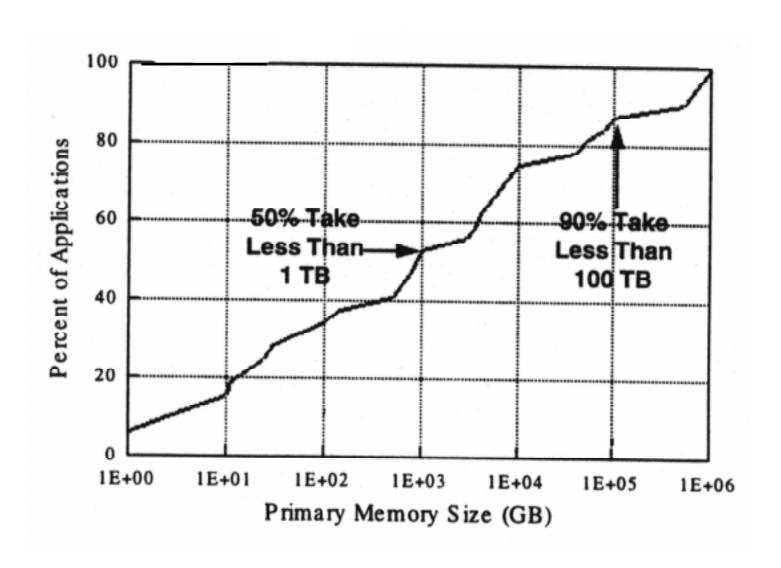
- First Workshop on Enabling Technologies for Petaflops Computing (Pflops-1): February, 1994
- First Petaflops Frontier Workshop:(TPF-1): February, 1995
- Petaflops Applications Summer Study (Bodega Bay): August, 1995
- Petaflops Architecture Workshop (PAWS): April, 1996
- Petaflops System Software Workshop (PetaSoft): June, 1996
- Second Petaflops Frontier Workshop (TPF-2): October, 1996
- System Software Mini-Workshop (MiniSoft): February, 1997
- Petaflops Algorithms Workshop (PAL): April, 1997
- 2nd Workshop on Enabling Technologies for Petaflops Computing (Pflops-2): January, 1998

Sponsoring Agencies

- BMDO
- DARPA
- DOE
- NASA
- NSA
- NSF


Strategic Findings

- Petaflops capability is essential for many important tasks in science, industry, defense, and commerce
- Petaflops systems will be feasible by 2015 to 2020
- Petaflops performance may be achievable by 2007 or earlier through alternative approaches
- For accelerated path, paradigm shift required
- Cost, power, and efficiency factors dominate
- Innovative methods and structures critical to generality, usability, efficiency, and cost effectiveness


Applications for Petaflops Computers

- Nuclear weapons stewardship
- Cryptology and digital signal proc.
- Satellite data processing
- Climate and environmental modeling
- 3-D protein molecular reconstructions
- Severe storm forecasting
- Design of advanced aircraft
- DNA sequence matching
- Molecular nanotechnology
- Large-scale economic modeling

How About Real Applications?

What Are Realistic Storage Sizes?

The NSF Point Design Studies

- A Flexible Architecture for Executing Component Software at 100 Teraops (University of Illinois at Urbana-Champaign)
- Pursuing a Petaflop: Point Designs for 100 TF Computers Using PIM Technologies (Notre Dame)
- Architecture, Algorithms and Applications for Future Generation Supercomputers (University of Minnesota)
- Design Studies on Petaflops Special-purpose Hardware for Astrophysical Particle Simulations (Drexel University, University of Tokyo, University of Illinois at Urbana-Champaign, and Princeton University)
- *Hybrid Technology Multithreaded Architecture* (California Institute of Technology, University of Delaware, and State University of New York at Stony Brook)
- Hierarchical Processors and Memory Architecture for High Performance Computing (Purdue University and Northwestern University)
- The Illinois Aggressive Cache-only Memory Architecture Multiprocessor, I-ACOMA (University of Illinois at Urbana-Champaign)
- A Scalable-Feasible Parallel Computer Implementing Electronic & Optical Interconnections for 156 Teraops Minimum Performance (New Jersey Institute of Technology and Wayne State University)

Challenges

- Peak Performance
 - Aggregate Compute Resources
 - Cost
 - Power consumption
- Sustained Performance
 - Latency
 - Overhead
 - Starvation
 - Contention
 - Generality (*Qness*)
 - Programmability

Architecture Concepts

- Superconducting processor logic
- Direct mapping of physical dataflow paths to algorithm kernels
- Exposing intrinsic memory structures to logic
- Compiler/library visible datapath resident reconfigurable logic
- Parallel speculative execution support for runtime address disambiguation
- Multithreading
- Aggressive prefetching into memory hierarchy
- COMA
- Ensemble of non-uniform granularity processors to beat Amdahl's Law
- Hierarchical topologies with varying bandwidth to match
- Algorithms communications
- Free space full interconnection with optics

Basic SIA Roadmap CMOS Trends

Characteristic							
(SIA Pg. #)	Units		1998	2001	2004	2007	2010
Feature Size(11)	$\mu\mathrm{m}$	0.35	0.25	0.18	0.13	0.1	0.07
Vdd(14)	volts	3.3	2.5	1.8	1.5	1.2	0.9
	DRAM						
Chip Capacity	MB	8	32	128	512	2,048	8,192
Chip Size(12)	mm^2	190	280	420	640	960	1400
Density	$\mathrm{MB/cm^2}$	4	11	30	80	213	585
Chip Cost	Rel. to 1995	1	1.65	2.82	3.76	7.53	12.05
\$/MB	Rel. to 1995	1	0.41	0.18	0.06	0.03	0.01
	rmance Micropr	ocessoi	· Logic	Based			
Transistors/Chip(16)	MT	12	28	64	150	350	800
Chip Size(B2)	mm^2	250	300	360	430	520	620
Density	MT/cm^2	5	9	18	35	67	129
Clock: μ P(12)	MHz	300	450	600	800	1000	1100
Clock: DSP(46)	MHz	400	600	800	1100	1500	1900
SRAM Cache Density(11)	$\mathrm{MB/cm^2}$	2	6	20	50	100	300
Cost/Transistor (B2)	millicents	1	0.5	0.2	0.1	0.05	0.02
Chip Cost	Rel. to 1995	1	1.17	1.07	1.25	1.46	1.33
ASIC Logic Chips							
Transistors/Chip	MT	9	26	53	108	275	560
Chip Size(B2)	mm^2	450	660	750	900	1100	1400
Logic Density(B2)	$\mathrm{MT/cm^2}$	2	4	7	12	25	40
Clock(B2)	MHz	150	200	300	400	500	625
Minimum Chip Cost	Rel. to 1995 μ P	0.75	1.1	0.88	0.9	1.15	0.93
NRE Chip Cost	\$/volume	27	26	26	32	55	56

Natural Evolutionary Path

Approaches:

Pure COTS

e.g., Beowulf-class PC clusters, NOW/COW

COTS plus

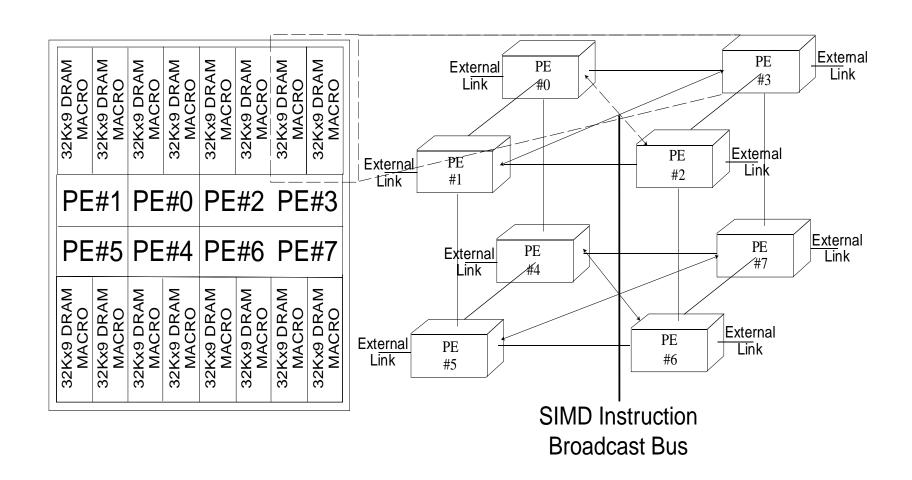
e.g., CRI T3E,

HP Convex SPP-2000

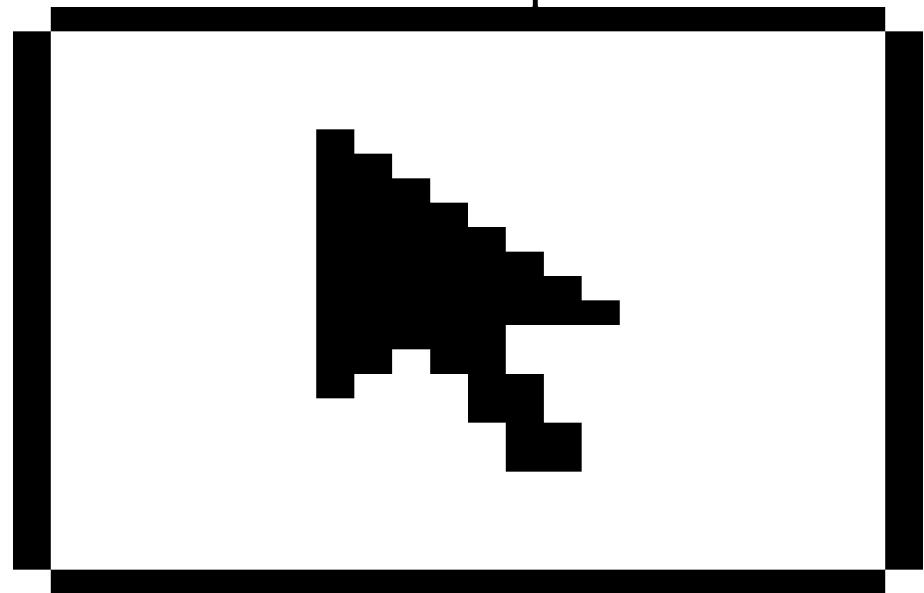
1998 2010

Cost \$20,000M \$500M - \$1000M

Power 1300 MVA 30 MVA


Particle # of Largest Simulation Feasible & Grape-6 Time Advantage

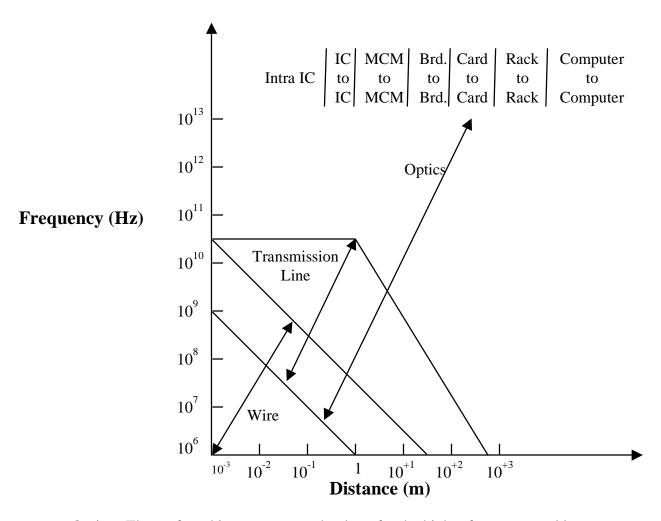
Problem Area	1995 General Purpose Supercomputer	1995 GRAPE-4	2000 General Purpose Supercomputer	2000 GRAPE-6	GRAPE-6 Time Advantage
Planet Formation & Rings	5×10^3	5×10^4	5×10^4	10^{6}	7 years
Globular Cluster Evolution	10^{4}	5×10^4	5×10^4	5×10^5	10 years
Black Hole Binary in Galactic Nucleus	10^5	10^{6}	10^6	3×10^7	10 years
Galaxy Evolution & Interactions	10^{6}	2×10^6	$3{ imes}10^7$	10^{8}	3 years
Galaxy Evolution & Interactions with SPH	2×10^5	10^{6}	5×10^6	10^7	2 years
Large Scale Structure & Galaxy Formation	$3{ imes}10^7$	3×10^7	5×10^{8}	5×10^8	0 years**
Large Scale Structu & Galaxy Formation		3×10^6	10^{8}	3×10^{8}	3 years


[†] All numbers are rough estimates for initial evaluation purposes only

^{**} Assumes RAM limited calculation

Point Designs Using PIM Technologies

SIA Projections for PIM Technology to a 100 Teraflops Machine


RSFQ TECHNOLOGY ROADMAP

Technology Parameters Year	HYPRES upgrade 1998	SUNY upgrade 2001	VLSI (shunted) 2004	VLSI (unshunted) 2007
Josephson junction size (µm)	3.50	1.50	0.80	0.50
Logic circuit density (Kgates/cm²)	10	30	100	1,000
Josephson current density (k/Vcm²)	1	6.5	20	50
Specific capacitance (aF/µm²)	45	60	67	75
I_cR_n product (mV)	0.3	0.6	1	1.5
SFQ pulse duration τ (ps)	4	2	1.2	0.8
Clock frequency f _{max} (GHz)	150	300	500	700
Speed of LSI circuits (GHz)	30	60	100	150
Average power (µw/gate)	0.03	0.06	0.1	0.15
Cost per junction (millicents)	100	30	10	1

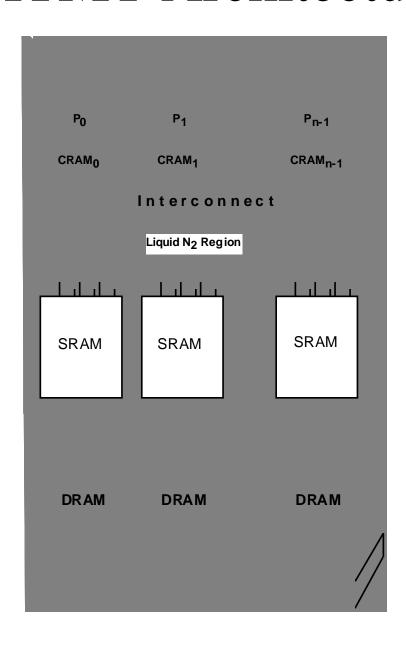
Optical Holographic Storage

- Potential of terabyte-scale storage
- Very low power
- Very high bandwidth
 - 100 Gbps
- Photorefractive
- Spectral hole burning
- Near term technologies

Optics: The Preferred Interconnect

Optics: The preferred interconnect technology for the higher frequency and longer distance applications [Feldman:88a], [Tsang:90a].

Emerging Capabilities for Guided Optical Interconnects


	Example	Speed	Power	Technology
Current Capability	HP and AT&T SONET		1-2 Watts 10 Watts	LED* LD*
10-Year Projection		100 Gb/s	1 Watt	LD (WDM or TDM)*
20-Year Projection		1 Tb/s	10 Watts	LD (WDM and TDM)

^{*} LED (Light Emitting Diode), LD (Laser Diode), WDM (Wavelength Division Multiplexing), TDM (Time Division Multiplexing)

HTMT Concepts and Approach

- Deep memory hierarchy to match very high speed logic with high capacity storage
- Employ multi-stage multithreaded mechanisms for latency management
- Smart storage performs memory oriented operations
 - establish new processor/memory relationship
 - define Memory Instruction Set Architecture (MISA)

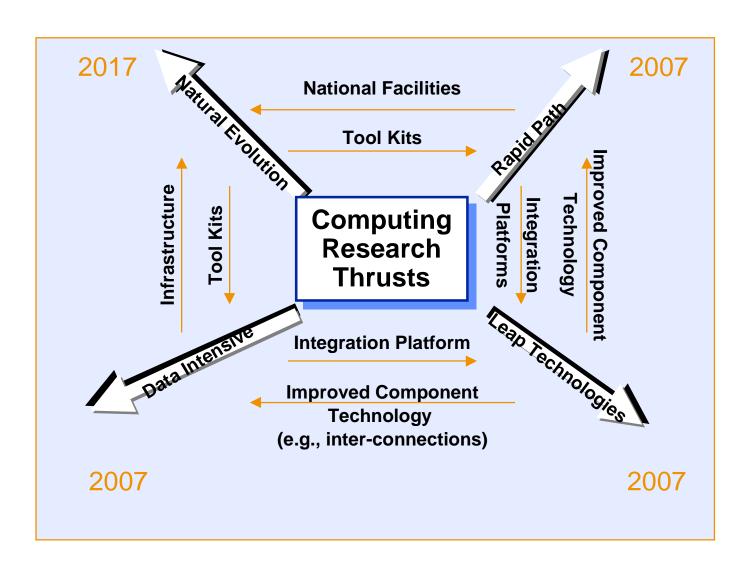
HTMT Architecture

Multistage Multithreaded Execution Model

- Extend latency hiding of multithreading
- Hierarchy of logical threads
 - Delineates threads and thread ensembles
 - Action sequences, state, and precedence constraints
- Fine grain single cycle thread switching
 - Processor level, hides pipeline and time of flight latency
- Coarse grain context "percolation"
 - Memory level, in memory synchronization
 - Ready contexts move toward processors, pending contexts towards big memory

System Software

- Importance of software
- Need for explicit, low-level control of hardware
- Need for a layered software architecture
- Existence of fundamental systems software scaling problems
- Opportunities for immediate software effort
- Interrelationship of hardware and low-level software


Algorithms

- Concurrency
- Data locality
- Latency and bandwidth
- Numerical accuracy
- New algorithmic approaches
- New languages and constructs
- Numerical library routines

Follow-on Investigations

- Pflops-1
 - Petaflops Applications Summer Study
 - PAWS
 - PetaSoft
- Petaflops Applications Summer Study
 - NSF Point Design Study
 - PAL Workshop
- PetaSoft
 - MiniSoft
- PAWS (Architecture Types and Exotic Technologies)
 - COTS:
 - HT + PIM + MT:
 - HTMT detailed study (sponsors NSA, NASA, and DARPA)
 - Multi-stage Multithreading
 - SPD: Grape-6
 SPH SPD workshop (NASA sponsored)

Directions Toward Petaflops Computing

Major Technical Findings

- Petaflops applications vary widely in memory use
 - Petabyte memory for data intensive applications
 - -3/4 root (32 Terabytes) for 3-D+T simulations
 - Small memory (<1 Terabytes) for narrow class of problems
- Latency management critical, requiring aggressive techniques in avoidance and hiding for efficiency
- Parallelism of 1,000,000 or more concurrent threads
- Bandwidth is primary obstacle to effective operation
- Architecture, software, and algorithms will differ from today's methods in response to these factors

Major Technical Findings (cont.)

- Exotic technologies offer aggressive advantage
 - Advanced Semiconductor
 - Superconducting RSFQ devices
 - Holographic memory
 - Optical interconnect
- Alternative architecture approaches
 - COTS derived clustered processor nodes
 - Processor in Memory (PIM)
 - Hybrid technology with deep memory hierarchy
 - Special purpose devices employing systolic structures
- Architecture advances required in processor design, aggressive latency control, and interconnection

• Major Technical Findings (cont.)

- System software resource management scalability identified as critical to utility
- Conflicting requirements challenge software design
 - expose hardware characteristics while supporting abstractions
 - emphasize reuse while exploiting specialized mechanisms
 - novel languages while supporting legacy code
- Hardware and low level software design interrelated
 - hardware provides efficient mechanisms
 - software establishes operation policies for application needs

Open Issues

- Can orders-of-magnitude latency be managed?
- What will the computer languages of the petaflops era look like?
- Should processor granularity be fat and few, or lean and unlimited?
- Can exotic technologies really outpace the CMOS stampede?
- Is it possible for system software of the future to turn a large pile of nodes back into a single computer?
- Is parallelism ubiquitous in the universe?

Recommendations

- Conduct detailed design and simulation studies of promising petaflops architectures
 - COTS technology based parallel computing
 - −e.g., Pure COTS: Pile of PCs;
 - Tightly coupled; Flash, Exemplar
 - Alternative architecture with conventional technology
 - -e.g., PIM, MTA
 - Alternative architecture and advanced technologies
 - hybrid technology multi-threaded
 - Special purpose devices
 - -e.g., Grape-6
- Perform detailed applications studies at scale
 - compare against selected architectures

Recommendations (cont.)

- Develop petaflops scale latency management
 - Architecture
 - aggressive prefetching
 - data streaming
 - advanced cache coherence (e.g. COMA)
 - multi-threaded
 - Algorithmic methods
 - System software techniques for hiding latency
- Demonstrate that applications can expose 100,000-way parallelism and that architectures and system software can exploit 100K concurrent threads

Recommendations (cont.)

- Accelerate research in promising advanced *sidestream* technologies:
 - Superconductor RSFQ
 - Holographic optical storage
 - Optical guided and free-space interconnect
 - Exotic semiconductors
- Explore algorithms for special purpose and reconfigurable structures
- Initiate early software development of layered software architecture for scalability and code reuse